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Abstract. The neutronless fission of 252Cf is studied in the frame of a molecular model in which the scission
configuration is described by two aligned fragments interacting by means of Coulomb (+ nuclear) forces.
The study is carried out for different distances between the fragments tips and excitation energies. For
a given deformation, the fragment’s total energy is computed via the constrained Hartree-Fock + BCS
formalism. The total excitation energy present in the fragments is supposed to contribute only to the
fragments deformation and the asymptotic value of the kinetic energy is equated to the inter-fragment
potential at scission. These two constraints are yielding a few fission channels for a fixed tip distance and
excitation energy. Discarding those fission channels corresponding to a disequilibrium in the sharing of
the excitation energy between the two fragments, we establish the most likely scission configurations for a
specified excitation energy.

PACS. 21.60 Gx Cluster models – 21.60.Jz Hartree-Fock and random-phase approximations – 24.75.+i
General properties of fission – 25.85.Ca Spontaneous fission

1 Introduction

In last time a renewed interest in the spontaneous fission
(sf) of 252Cf arosed in connection with modern experimen-
tal techniques, based on large Ge detector arrays, which
allow a better determination of the mass, charge and an-
gular momentum content of the fragments [1].

Attention has been paid to the limiting case of cold
fission, when no neutrons are emitted and the energy re-
leased in the reaction is converted entirely in the kinetic
energy of the fragments. Some features of this process have
been very recently explained satisfactory using cluster like
models [2,3]. In these models it is assumed that at scis-
sion the fragments have very compact shapes, close to
the ground state and thus they are carrying very small
excitation energy. The scission configuration consists of
two co-axial fragments with a certain distance d between
their tips. In the model proposed by Gönnenwein et al.
[4], the cold fission was studied by determining the dis-
tance dmin of the closest approach between the two frag-
ments, when the Q-value equals the interaction energy.
This model predicted the smallest tip distance (bellow 3
fm) for fragments, with mass numbers between 138 and
158 and around the double magic 132Sn, emerging in the
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sf of 252Cf. Small tip distances were interpreted as a sign
of cold fission due to the higher interaction energies at
scission.

In the past the scission-point model succeeded also to
explain roughly some basic observables of low-energy fis-
sion. Based on the assumption of statistical equilibrium
among the collective degrees of freedom at the scission
point, Wilkins et al. [5] calculated the relative probabili-
ties of formation of complementary fission fragment pairs
from the relative potential energies of a system of two
coaxial, quadrupole deformed liquid drops, with shell cor-
rections taken into account. The distance between their
tips, the intrinsic excitation energy and collective temper-
ature were choosen as the free parameters of the model.
In this way the general features of the distributions of
mass, nuclear charge and kinetic energy in the fission of
various nuclides, ranging from Po to Fm were well repro-
duced. Using similar ideas, Nörenberg [6] computed the
level schemes, equilibrium deformations of the fragments,
total energies and charge distributions of 236U, 240−242Pu
using the BCS wave-function in the description of the
ground state.

In this paper we generalize the static scission-point
concept of nuclear fission model in such a way that instead
of describing the fragments as two deformed nearly touch-
ing liquid drops with shell corrections taken into account,



400 Ş. Mişicu, Ph. Quentin: Semi-microscopical description of the scission configuration in neutronless fission

we incorporate the fragments shell structure by means of
the self-consistent Hartree-Fock method with BCS pair-
ing correlations (HF+BCS). For the given binary splitting
252Cf−→104Mo + 148Ba we first established the equilib-
rium deformations of the two fragments by seeking the
HF minimum and next their total energy for various de-
formations is computed by constraining their quadrupole
moments. The two fragments are considered as coaxial
with distance d between their tips.

One of the basic approximation employed in this paper
was that the interaction energy at scission is transformed
into kinetic energy of the fragments at infinity. Thus, all
the excitation energy present in the fissioning system is
accounted by the deformation energy. This amounts to
neglect that part of the energy released at the descent from
saddle to scission which is spent on heat. Thus, our study
concerns mainly the low-energy domain of sf including the
limiting case of cold fission [4].

By using the above mentioned constraints we were able
to deduce the possible shapes of the fragments for various
tip distances and total excitation energies E∗.

2 Molecular model of low energy fission

2.1 Energy balance at scission

In the sf of 252Cf the fragments are born with a certain
deformation and will carry a total excitation energy E∗,
gained during the descent from saddle to scission which
will be dissipated by means of neutron and gamma emis-
sion [7]

Q = Vsciss + TKEpre +
∑
1,2

Edef (i) +
∑
1,2

Eint(i) (1)

where Vsciss = Vcoul + Vnucl represents the fragments in-
teraction energy at scission. For Vcoul we choose the form
corresponding to two diffuseless deformed homogenously
charged nuclei with collinear symmetry axes with a dis-
tance R between their centers [8]
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The variables x1 and x2 are expressed in terms of the
semiaxes a and b
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The above double series is converging for |x1| + |x2| < 1
and the final result is given, according to [9], in closed
form :
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For the attractive nuclear potential we choose the prox-
imity formula for two nuclei with a finite surface thickness
[10]

Vnucl = 4πR̄γΦ(ζ) (5)

The explanations of the different quantities entering in the
above formula can be found in [11]. The prescission kinetic
energy TKEpre is taken to be zero, an assumption which
proved to be reasonable for low-energy fission [5]. Also,
that part of the excitation energy which is transformed
into internal excitation energy E∗int, is neglected. Accord-
ing to time dependent quantum many-body calculations,
the intrinsic excitation energy accounts for less than 15%
of the collective energy gain in going from the saddle to
the scission [12]. Schütte and Wilets [13] gave also an up-
per bound for E∗int, which is still small compared to the
total excitation energy E∗.

2.2 The deformation energy in the frame of the
Hartree-Fock + BCS method

That part of the excitation energy which goes into the de-
formations of the fragments was denoted in (1) by Edef . In
the study of sf properties, Edef is taken usually as a sum
of the liquid drop model (LDM) energy, and the shell and
pairing corrections [14]. In this paper the deformation en-
ergy Edef of the fissioning system at scission is referred to
the HF+BCS energy of the two fragments in their ground
states

Edef = EHF+BCS(N1, Z1, β1)− EHF+BCS(N1, Z1, β
g.s.
1 )

+ EHF+BCS(N2, Z2, β2)− EHF+BCS(N2, Z2, β
g.s.
2 )

(6)

Obviously this is a more general approach. The LDM,
which is based on a semiclassical description of the nuclei,
supplemented by the shell-effect corrective energy, is only
a poor substitute for a self-consistent calculation [15]. One
of the main advantages of the self-consistent HF+BCS cal-
culation is that it provides simultaneously both the single-
particle and semiclassical properties of nuclei. The general
properties of the Hartree-Fock method were reviewed in
[16,17].

In our study for the HF part of the interaction we
choose the Skyrme interaction SIII [18], which succeeded
to reproduce satisfactory the single-particle spectra of
even-even nuclei. The difference between the binding en-
ergy computed with SIII and the experimental one ap-
pears to be, for a large number of nuclei, ≈ 5 MeV [19]. It
also produces a fairly well N −Z dependence of the bind-
ing energy [20]. The present study envisages nuclei that
are not in a closed shell configuration. Thus, the level oc-
cupations will have a large effect on the solution of the
HF equations.

Following Vautherin [21] we assign to each orbital φk
an occupation number nk = v2

k, where u2
k + v2

k = 1,
uk̄ = uk and vk̄ = −vk. In terms of the density ρ(r) =
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2
∑′
k nk|φk(r)|2 the HF+BCS total energy, that has to be

minimized, reads

EHF+BCS = Tr
[
(T +

1
2
V)ρ

]
+ Ep (7)

where

〈T 〉 =
h̄2

m

(
1− 1

A

)∑
k

′
nk

∫
dr|φk(r)|2 (8)

is the expectation value of the kinetic energy, and V =
tr(ρṽ) enters as the Hartree-Fock-like potential, ṽ being
the antisymmetrized effective two-body interaction. The
primed sum

∑′ denotes a summation over all HF orbitals
having projections of the total angular momentum j on
the z-axis Ωk > 0. To the total energy we added the pair-
ing energy

Ep = −G
4

{∑
k

[
nk(1− nk)

1
2

]}2

(9)

For BCS-like calculations, the matrix elements of ṽ be-
tween HF states is taken to be constant

G = −
∫
dr

∫
dr′φ∗k(r)φ∗k̄(r)ṽ(r, r′)φl(r′)φl̄(r

′) (10)

Varying the normalized single-particle wave functions φk
and their amplitudes vk under the additional constraint
λτ
∑
k (δτk,τnk −Nτ ) , (τ = p, n), which ensures that on

the average the system contains the correct number of
neutrons N and protons Z, we are led to the standard HF
and BCS equations [21].

The occupations nk are determined at each step of the
HF iterative calculation using the HF eigenvalues εk, and
they are employed at the next step to construct the HF
field. The pairing force constant is

Gτ =
G0τ

11 +Nτ
MeV (τ = p, n) (11)

The constant G0τ was adjusted in such a way to obtain
the experimental pairing gap

∆τ = G
∑
k

′
ukvk (12)

In the deformed HF calculations one have to optimize the
basis which is choosen to correspond to an axial sym-
metric deformed harmonic-oscillator with frequencies ω⊥
and ωz. Such a basis is characterized by the deforma-
tion parameter q = ω⊥/ωz and harmonic oscillator length
b =

√
mω0/h̄, with ω3

0 = ω2
⊥ωz. The basis is cut off after

Nmax=10 major shells, for 148Ba and 104Mo. The opti-
mization consists in searching for those values of the pa-
rameters b and q minimizing the energy.

The next step consists in mapping out the potential
energy curves. This is done by adding to the energy func-
tional (7) a quadratic constraint C

2 (Q − Q0)2 [22]. Here
Q0 is a specified targeted value of the mass quadrupole
moment. In Fig. 1 we represented the deformation energy
curves of the nuclei 104Mo and 148Ba produced in the sf
of 252Cf for a range of deformations including the first
prolate and oblate minima.

Fig. 1. The deformation energy curves of the nuclei 148Ba and
104Mo computed in the frame of the HF+BCS method with
quadratic constraint for the mass quadrupole

3 The distribution of excitation energy in the
fission fragments

The scope of this section is to seek the configuration of
the system at scission for a fixed excitation energy E∗.
According to (1), the interaction energy of two fragments,
with deformations β1 and β2 at scission, is related to the
excitation energy through the relation

V (β1, β2, d) = Q− E∗ (13)

where d is the tip distance and enters in the theory as a pa-
rameter. We equate this last quantity with the asymptotic
kinetic energy TKE(∞). This relation is a consequence of
the approximations that we made earlier, i.e. we neglected
the prescission kinetic energy TKEpre and we forced all
the available excitation energy to be stored into deforma-
tion

E∗(β1, β2) = Edef (β1) + Edef (β2) (14)

where Edef is computed according to (7). Thus, for a given
excitation energy we obtain two non-linear equations, i.e.
(13) and (14).

In Fig. 2 we represented the excitation energy land-
scape (14), for the pair (104Mo, 148Ba). The deepest
minimum corresponds to the prolate-prolate configura-
tion (β1 > 0, β2 > 0). At this point E∗ = 0 and fis-
sion proceeds by means of only one channel, customary
known as true cold fission. This configuration has deforma-
tions β1(148Ba)=0.270 and β2(104Mo)=0.364, differing by
10% from those computed in the frame of the finite-range
liquid-drop model [23]. The non-linear equations, quoted
above, admit this solution only for the tip distance d =
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Fig. 2. Three-dimensional plot of the excitation energy E∗ for
the pair (148Ba, 104Mo) computed in the frame of the HF+BCS
method

2.95 fm, a value very close to the border of 3 fm, alleged
by the Tübingen group, bellow which cold fission occurs
[3].

When we increase the excitation energy, an infinity of
solutions arise according to (14). They have to be identi-
fied with the geometrical locus of points with equal excita-
tion energy. However, the second constraint (13) is limiting
drastically the number of (β1, β2) pairs. As an example we
give in Fig. 3 the contour plots of the excitation energy
and superposed on them the curve relating β1 to β2 for the
tip distance d = 3.25 fm at E∗ = 2 MeV, deduced from
(13). The intersection of such curves with the contour lines
of equal excitation energy will give the physical solutions
to our fission problem, i.e. for a certain tip distance one
get different scission configurations or channels.

As one observe in Table 1 one get generally two
ore more solutions which are located, mainly for low-
excitation energies, in the quadrant with β1, β2 > 0. For
pure cold fission (E∗ = 0) one get a solution for only
one d, whereas for E∗ > 0 one get solutions for several
values of d. As a matter of fact our investigation points
to different regions of the tip distance. Grossly they are
ranging between 2.65 fm and 5.5 fm for the neutronless
fission. Naturally, one may ask next if all these solutions
are likely to occur. For that one should look at the ratio
of excitation energies between the two fragments. Calcula-
tions based on the cascade evaporation model predicted a
ratio of the mean excitation energies E∗2/E

∗
1 ≈ 0.5 around

the splitting 104/148 when approaching the limiting case
of cold fission [24]. According to the same reference, a dis-
proportionate sharing of the excitation energy should be
expected only in the vicinity of magic numbers, when one

Fig. 3. Graphical solution of the non-linear equations (13) and
(14). The intersection of the solid curve with the contour lines
provides two solutions in the particular case of the pair (148Ba,
104Mo), with tip distance d = 3.25 fm and total excitation
energy E∗ = 2 MeV

of the fragments, due to its shell closure, cannot be excited
bellow a certain threshold of the excitation energy.

In Table 1 we list the deformations and the ratio of
excitation energies E∗2/E

∗
1 for a few tip distances, in the

interval mentioned above, and total excitation energy E∗=
0, 2 , 4, 6 and 8 MeV. One may infer from the inspection of
this table that the case with d = 2.65 fm is a possible scis-
sion configuration for E∗ ≤ 6 MeV. Above this value one
of the channels with d = 3.25 fm seems to be a better can-
didate for a scission configuration. As one sees, for large
tip distances (d =5.05 fm) one of the fragments emerges
with oblate shape which means that the corresponding
solution of the non-linear equations (13-14) is located in
the second quadrant (the upper-left in Fig. 3). One also
sees that in some cases, for a given tip distance, one get
up to four fission channels. In the case listed for E∗ =
6 MeV, i.e. d=5.05 fm, only the solution with β1=0.374
and β2=-0.226 has a reasonable ratio of excitation ener-
gies. However, when E∗ = 8 MeV, it seems that two of the
three solutions should be considered as good candidates,
i.e. β1 = −0.224, β2 = 0.530 and β1 = −0.083, β2 = 0.279.

In Fig. 4 we give the fragments density contour lines
at a fixed excitation energy, namely E∗ = 4 MeV and
different tip distances. In Fig. 4a we displayed those fis-
sion channels in which both fragments are emitted with
large deformations, whereas in Fig. 4b we present cases in
which one of the fragment, especially the heavy one, has
noticeable deformations.



Ş. Mişicu, Ph. Quentin: Semi-microscopical description of the scission configuration in neutronless fission 403

Fig. 4. Fragments density contour lines for excitation energy
E∗ = 4 MeV and tip distances d = 2.65, 2.95, 3.25 and 5.05
fm. The upper panel corresponds to channel I with large de-
formations for both fragments and the lower one to channel II
with very large deformations for one of the fragments

4 Conclusions

Based on a molecular model in which the scission configu-
ration has to fulfill two main energetic constraints, namely
that the interaction between the fragments is converted
totally into asymptotic kinetic energy and that the exci-

Table 1. Pairs of fragments deformations (β1, β2) and ratio of
excitations energies E∗2/E

∗
1 for different excitation energies E∗

and tip distances d

E∗(MeV) d (fm) β1 β2 E∗2/E
∗
1

0 2.95 0.270 0.364 –

2 2.65 0.325 0.463 0.34
0.263 0.533 262.6

2.95 0.335 0.351 0.01
0.215 0.486 0.78

3.35 0.282 0.269 3.55
0.186 0.375 0.02

4 2.65 0.358 0.486 0.28
0.263 0.593 2.1·103

2.95 0.372 0.369 9.4·10−4

0.208 0.554 1.96
3.35 0.341 0.263 0.74

0.151 0.475 0.21
5.05 0.336 −0.238 4.49

0.331 −0.260 1.19

6 2.65 0.374 0.530 0.47
2.95 0.213 0.610 4.01
3.35 0.381 0.279 0.28

0.143 0.546 0.65
5.05 −0.212 0.447 0.06

0.374 −0.226 0.46
−0.139 0.316 0.10

0.204 −0.102 3.13

8 2.65 0.371 0.596 1.06
3.35 0.146 0.604 1.29
5.05 −0.224 0.530 0.31

−0.083 0.279 0.20
0.172 −0.038 2.26

tation energy of the fissioning system is accounted only
by the deformation energy, we carried out constrained
HF+BCS calculations at zero temperature for the nuclei
emerging in the low-energy spontaneous fission reaction.
For a fixed excitation energy we varied the distance be-
tween the tips of the fragments. Each case admits one,
two, three and even four solutions for the fragments de-
formations. The qualitative criteria which allowed us to
select the valid scission configuration was based on the
excitation energy distribution between the fragments. We
discarded those configurations with a disproportionate ra-
tio between the excitation energies of the two fragments
as long as we do not deal with fragments close to magic
numbers. Our analyse is predicting roughly two types of
scission configurations, depending on the excitation en-
ergy present in the system. Prolate-prolate deformations
are expected for tip distances between 2.65 and 3.25 fm.
Around 5 fm prolate-oblate fragments deformations seems
to be favoured.

The present study was limited to only one of the
observed splittings occuring in the cold fragmentation
of 252Cf. By extending these calculations to some other
tenths of binary splittings recorded in this reaction it will
be possible also to compute the yields for different ex-
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citation energies. Until now only yields at E∗ = 0 MeV
have been reported theoretically [2] although the exper-
iment provides yields up to several MeV of excitation
energies.

One of the authors (Ş.M.) would like to acknowledge the fi-
nancial support from the IN2P3 of the CNRS (France). He is
also very indebted to N. Pillet and Prof. I.N. Mikhailov for
enlightning discussions.
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Gagarski and G. Petrov, Proceedings of the International
Conference Fission and Properties of Neutron-Rich Nu-
clei, eds. J.H. Hamilton and A.V. Ramayya, p. 109, World
Scientific, Singapore 1998
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